Skip to main content

Deck.blue brings a TweetDeck experience to Bluesky users

With over 3 million users and plans to open up more broadly in the months ahead, Bluesky is still establishing itself as an alternative to Twitter/X. However, that hasn’t stopped the developer community from embracing the project and building tools to meet the needs of those fleeing the now Elon Musk-owned social network, formerly known […] © 2024 TechCrunch. All rights reserved. For personal use only. from TechCrunch https://ift.tt/TBbEAPF

How confidential computing could secure generative AI adoption

Generative AI has the potential to change everything. It can inform new products, companies, industries, and even economies. But what makes it different and better than “traditional” AI could also make it dangerous.

Its unique ability to create has opened up an entirely new set of security and privacy concerns.

Enterprises are suddenly having to ask themselves new questions: Do I have the rights to the training data? To the model? To the outputs? Does the system itself have rights to data that’s created in the future? How are rights to that system protected? How do I govern data privacy in a model using generative AI? The list goes on.

It’s no surprise that many enterprises are treading lightly. Blatant security and privacy vulnerabilities coupled with a hesitancy to rely on existing Band-Aid solutions have pushed many to ban these tools entirely. But there is hope.

Confidential computing — a new approach to data security that protects data while in use and ensures code integrity — is the answer to the more complex and serious security concerns of large language models (LLMs). It’s poised to help enterprises embrace the full power of generative AI without compromising on safety. Before I explain, let’s first take a look at what makes generative AI uniquely vulnerable.

Generative AI has the capacity to ingest an entire company’s data, or even a knowledge-rich subset, into a queryable intelligent model that provides brand new ideas on tap. This has massive appeal, but it also makes it extremely difficult for enterprises to maintain control over their proprietary data and stay compliant with evolving regulatory requirements.

Protecting training data and models must be the top priority; it’s no longer sufficient to encrypt fields in databases or rows on a form.

This concentration of knowledge and subsequent generative outcomes, without adequate data security and trust control, could inadvertently weaponize generative AI for abuse, theft, and illicit use.

Indeed, employees are increasingly feeding confidential business documents, client data, source code, and other pieces of regulated information into LLMs. Since these models are partly trained on new inputs, this could lead to major leaks of intellectual property in the event of a breach. And if the models themselves are compromised, any content that a company has been legally or contractually obligated to protect might also be leaked. In a worst-case scenario, theft of a model and its data would allow a competitor or nation-state actor to duplicate everything and steal that data.

These are high stakes. Gartner recently found that 41% of organizations have experienced an AI privacy breach or security incident—and over half are the result of a data compromise by an internal party. The advent of generative AI is bound to grow these numbers.

Separately, enterprises also need to keep up with evolving privacy regulations when they invest in generative AI. Across industries, there’s a deep responsibility and incentive to stay compliant with data requirements. In healthcare, for example, AI-powered personalized medicine has huge potential when it comes to improving patient outcomes and overall efficiency. But providers and researchers will need to access and work with large amounts of sensitive patient data while still staying compliant, presenting a new quandary.

To address these challenges, and the rest that will inevitably arise, generative AI needs a new security foundation. Protecting training data and models must be the top priority; it’s no longer sufficient to encrypt fields in databases or rows on a form.

In scenarios where generative AI outcomes are used for important decisions, evidence of the integrity of the code and data—and the trust it conveys—will be absolutely critical, both for compliance and for potentially legal liability management. There must be a way to provide airtight protection for the entire computation and the state in which it runs.

The advent of “confidential” generative AI

Confidential computing offers a simple, yet hugely powerful way out of what would otherwise seem to be an intractable problem. With confidential computing, data and IP are completely isolated from infrastructure owners and made only accessible to trusted applications running on trusted CPUs. Data privacy is ensured through encryption, even during execution.

Data security and privacy become intrinsic properties of cloud computing—so much so that even if a malicious attacker breaches infrastructure data, IP and code are completely invisible to that bad actor. This is perfect for generative AI, mitigating its security, privacy, and attack risks.

Confidential computing has been increasingly gaining traction as a security game-changer. Every major cloud provider and chip maker is investing in it, with leaders at Azure, AWS, and GCP all proclaiming its efficacy. Now, the same technology that’s converting even the most steadfast cloud holdouts could be the solution that helps generative AI take off securely. Leaders must begin to take it seriously and understand its profound impacts.

With confidential computing, enterprises gain assurance that generative AI models only learn on data they intend to use, and nothing else. Training with private datasets across a network of trusted sources across clouds provides full control and peace of mind. All information, whether an input or an output, remains completely protected, and behind a company’s own four walls.

How confidential computing could secure generative AI adoption by Walter Thompson originally published on TechCrunch



from TechCrunch https://ift.tt/490YdMc

Comments

Popular posts from this blog

New month, new crypto market moves?

To get a roundup of TechCrunch’s biggest and most important crypto stories delivered to your inbox every Thursday at 12 p.m. PT, subscribe here . Welcome back to Chain Reaction. Seems like just yesterday we were ringing in the New Year, but we’ve coasted into February and all seems to be somewhat relaxed (for once) in the crypto world. Last month was filled with crypto companies laying off staff , developments around the existing and new Chapter 11 bankruptcies in the space, partnerships and conversations about potential recovery in 2023. Even with a range of bad news flooding the industry, some cryptocurrencies had a bull run in January, amid the market turmoil. Bitcoin rallied 40% on the month, while ether rose about 32% during the same period. Solana also saw serious recovery, from about $10 in the beginning of the year, near its lowest level since February 2021, up 146% to about $24.3 by the end of January, CoinMarketCap data showed. These market movements could pot...

Metaverse app BUD raises another $37M, plans to launch NFTs

BUD , a nascent app taking a shot at creating a metaverse for Gen Z to play and interact with each other, has raised another round of funding in three months. The Singapore-based startup told TechCrunch that it has closed $36.8 million in a Series B round led by Sequoia Capital India, not long after it secured a Series A extension in February . The new infusion brings BUD’s total financing to over $60 million. As with BUD’s previous rounds, this round of raise attracted a handful of prominent China-focused investors — ClearVue Partners, NetEase and Northern Light Venture Capital. Its existing investors GGV Capital, Qiming Venture Partners and Source Code Capital also participated in the round. Founded by two former Snap engineers Risa Feng and Shawn Lin in 2019, BUD lets users create bulbous 3D characters, cutesy virtual assets and richly colored experiences through drag-and-drop and without any coding background. The company declined to reveal its active user size but said its use...

Can Arbitrum’s recently formed DAO recover from its messy week?

The TechCrunch Podcast Network has been nominated for two Webbys in the Best Technology Podcast category. You can help TechCrunch win by voting for Chain Reaction , which digs into the wild world of crypto, or Found , which brings you the stories behind the startups by sitting down with the founders themselves. Please take a few moments to vote here . Voting closes April 20. (NB I host Chain Reaction, so vote for my show!) Welcome back to Chain Reaction. This week was pretty bearable as a crypto reporter covering this space. There was less crazy news transpiring, compared to previous weeks (where we saw a number of U.S. government crackdowns on major crypto companies like Binance and Coinbase ). Still, it’s never a dull week in the crypto world. In late March, Arbitrum, an Ethereum scaling solution, transitioned into a decentralized autonomous organization (DAO), after airdropping community members its new token, ARB. DAOs are meant to operate with no central authority and token h...